Epigenetic Characterization of the Growth Hormone Gene Identifies SmcHD1 as a Regulator of Autosomal Gene Clusters
نویسندگان
چکیده
Regulatory elements for the mouse growth hormone (GH) gene are located distally in a putative locus control region (LCR) in addition to key elements in the promoter proximal region. The role of promoter DNA methylation for GH gene regulation is not well understood. Pit-1 is a POU transcription factor required for normal pituitary development and obligatory for GH gene expression. In mammals, Pit-1 mutations eliminate GH production resulting in a dwarf phenotype. In this study, dwarf mice illustrated that Pit-1 function was obligatory for GH promoter hypomethylation. By monitoring promoter methylation levels during developmental GH expression we found that the GH promoter became hypomethylated coincident with gene expression. We identified a promoter differentially methylated region (DMR) that was used to characterize a methylation-dependent DNA binding activity. Upon DNA affinity purification using the DMR and nuclear extracts, we identified structural maintenance of chromosomes hinge domain containing -1 (SmcHD1). To better understand the role of SmcHD1 in genome-wide gene expression, we performed microarray analysis and compared changes in gene expression upon reduced levels of SmcHD1 in human cells. Knock-down of SmcHD1 in human embryonic kidney (HEK293) cells revealed a disproportionate number of up-regulated genes were located on the X-chromosome, but also suggested regulation of genes on non-sex chromosomes. Among those, we identified several genes located in the protocadherin β cluster. In addition, we found that imprinted genes in the H19/Igf2 cluster associated with Beckwith-Wiedemann and Silver-Russell syndromes (BWS & SRS) were dysregulated. For the first time using human cells, we showed that SmcHD1 is an important regulator of imprinted and clustered genes.
منابع مشابه
Epigenetic Functions of Smchd1 Repress Gene Clusters on the Inactive X Chromosome and on Autosomes
The Smchd1 gene encodes a large protein with homology to the SMC family of proteins involved in chromosome condensation and cohesion. Previous studies have found that Smchd1 has an important role in CpG island (CGI) methylation on the inactive X chromosome (Xi) and in stable silencing of some Xi genes. In this study, using genome-wide expression analysis, we showed that Smchd1 is required for t...
متن کاملMolecular and Cellular Pathobiology Epigenetic Regulator Smchd1 Functions as a Tumor Suppressor
SMCHD1 is an epigenetic modifier of gene expression that is critical to maintain X chromosome inactivation. Here, we show in mouse that genetic inactivation of Smchd1 accelerates tumorigenesis in male mice. Loss of Smchd1 in transformed mouse embryonic fibroblasts increased tumor growth upon transplantation into immunodeficient nude mice. In addition, loss of Smchd1 in Em-Myc transgenic mice th...
متن کاملEpigenetic regulator Smchd1 functions as a tumor suppressor.
SMCHD1 is an epigenetic modifier of gene expression that is critical to maintain X chromosome inactivation. Here, we show in mouse that genetic inactivation of Smchd1 accelerates tumorigenesis in male mice. Loss of Smchd1 in transformed mouse embryonic fibroblasts increased tumor growth upon transplantation into immunodeficient nude mice. In addition, loss of Smchd1 in Eμ-Myc transgenic mice th...
متن کاملSMCHD1 accumulates at DNA damage sites and facilitates the repair of DNA double-strand breaks
SMCHD1 is a structural maintenance of chromosomes (SMC) family protein involved in epigenetic gene silencing and chromosome organisation on the female inactive X chromosome and at a limited number of autosomal loci. Here, we demonstrate that SMCHD1 also has a role in DNA repair of double-strand breaks; SMCHD1 is recruited to sites of laser micro-irradiated damage along with other DNA repair fac...
متن کاملGene co-expression network analysis identifies BRCC3 as a key regulator in osteogenic differentiation of osteoblasts through a β-catenin signaling dependent pathway
Objective(s): The prognosis of osteoporosis is very poor, and it is very important to identify a biomarker for prevention of osteoporosis. In this study, we aimed to identify candidate markers in osteoporosis and to investigate the role of candidate markers in osteogenic differentiation. Materials and Methods: Using Weighted Gene Co-Expression Network analysis, we identified three hub genes mig...
متن کامل